
Novel Cyclopentadienyl Ruthenium(II) Complexes of Biologically Important Compounds

Robert M. Moriarty, Yi-Yin Ku, and Udai S. Gill

University of Illinois at Chicago, Department of Chemistry, Box 4348, Chicago, Illinois 60680, U.S.A.

New cyclopentadienyl ruthenium complexes of tryptophol, *N*-acetyltryptamine, *N*-acetyl-L-tryptophan ethyl ester, *N*-acetyl-L-phenylalanine ethyl ester, and *N*-acetyl-L tyrosine ethyl ester were prepared by thermal ligand exchange reaction between cyclopentadienyl-tris(acetonitrile)ruthenium hexafluorophosphate and the substrate in 60—80% yields.

Ruthenocene and its derivatives are finding increasing biochemical applications in the area of metallopharmaceuticals.¹ For example, radiolabelled ruthenocenylalanine has been evaluated as a pancreatic imaging agent.² In connection with a programme directed towards developing new methods for the regiospecific synthesis of substituted indoles, we synthesized $(\eta^{6-4} - \text{ or } 5\text{-chloroindole})Ru(\eta^{5-}Cp)$ hexafluorophosphates (Cp = cyclopentadienyl).³ We now report the attachment of the organometallic moiety (CpRu⁺) onto the aromatic ring of biologically active compounds, specifically, tryptophol, *N*-acetyltryptamine, and the ethyl esters of *N*-acetyl-L-tryptophan, *N*-acetyl-L-phenylalanine, and *N*-acetyl-L-tyrosine.

These novel complexes are of potential interest as radiopharmaceuticals (97 Ru, 103 Ru, 106 Ru), in metalloimmunoassay,⁴ and in the synthesis of neuropeptides containing terminal tyrosine and alanine (enkephalin,⁵ human- β -endorphin,⁶ and peptide T⁷).

Thermal exchange between $[CpRu(MeCN)_3]PF_6$ and simple arenes,⁸ and cyclophane and polycyclic aromatic hydrocarbons⁹ has been reported, but our work using substituted indoles as ligands demonstrated the application of this process to more complex systems.³ Scheme 1 illustrates the methodology applied to protected amino acids. The cyclopentadienyl-ruthenium complexes (2)—(6), were prepared as follows: Under a nitrogen atmosphere, the substrate (1.3 mmol) and $[CpRu(MeCN)_3]PF_6$ (1) (1.0 mmol) were heated at 40—50 °C in 1,2-dichloroethane (20 ml) for 15 h. The solvent was removed *in vacuo* and the residue was washed with ether; the solid which remained was recrystallised (acetone–ether) to give the yellow complexes (2)—(6) in 60—80% yields [based]

on (1)]. These novel complexes are thermally stable, crystalline solids and gave satisfactory analytical and spectroscopic results.[†] The cyclopentadienyl protons are observed at δ 5.0–5.3, with carbon resonances in the range δ 79–81.

This work establishes that stable $CpRu^{(n)}$ complexes of suitably protected aromatic amino acids of potential biological importance can be synthesized as stable compounds.

We thank the National Science Foundation for support under contract NSF CHE 8605980.

Received, 21st July, 1987; Com. 1057

References

- 1 M. Wenzel, P. Asindraza, and G. Schachschneider, J. Labelled Compd. Radiopharm., 1983, 20, 1061, and references therein.
- 2 W. H. Soine, C. E. Guyer, and F. F. Knapp, Jr., J. Med. Chem., 1984, 27, 803, and references therein.
- 3 R. M. Moriarty, Y. Y. Ku, and U. S. Gill, J. Chem. Soc., Chem. Commun., 1987, 1493.
- 4 M. Cais, Methods Enzymol, 1983, 92, 445.
- 5 J. Hughes, Brain Res., 1975, 88, 295.
- 6 R. Guillemin, N. Ling, and R. Burgus, C. R. Acad. Sci., Ser. D, 1976, 282 783.
- 7 C. B. Pert, J. M. Hill, M. R. Ruff, R. M. Berman, W. G. Robey, L. O. Arthur, F. W. Ruscetti, and W. L. Farrar, *Proc. Natl. Acad. Sci. USA*, 1986, **83**, 9254.
- 8 T. P. Gill and K. R. Mann, Organometallics, 1982, 1, 485.
- 9 A. M. McNair and K. R. Mann, Inorg. Chem., 1986, 25, 2519.

 \dagger All new ruthenium complexes were characterized, *inter alia*, by ${}^{1}H$ and ${}^{13}C$ n.m.r. and combustion analysis.

Selected spectroscopic data for (3): ¹H n.m.r. [400MHz, $(CD_3)_2CO$] δ 10.27 (s, NH), 7.67 (d, J 2.4 Hz, 2-H), 7.24 (s, NHCOMe), 7.08 (d, J 6.0 Hz, 7-H), 7.01 (d, J 6.0 Hz, 4-H), 5.96 (t, J 5.6 Hz, 6-H), 5.92 (t, J 5.6 Hz, 5-H), 5.00 (s, Cp), 3.41—3.56 (m, CH₂CH₂NH), 2.93 (t, J 7 Hz, -CH₂CH₂NH), 1.88 (s, COMe); ¹³C n.m.r. [400 MHz, (CD₃)₂CO] δ 170.36 (COMe), 134.76 (C-2), 111.31 (C-3), 115.16, 96.18, 81.57, 81.37, 77.01, and 72.30 (Ar-ring), 79.04 (Cp), 39.68 and 25.43 (CH₂'s), 22.95 (COCH₃).

For (4): ¹H n.m.r. [400 MHz, (CD₃)₂CO] δ 10.29 (s, NH), 7.75 (s, 2-H), 7.54 (d, *J* 8 Hz, NHCOMe), 7.10 (d, *J* 6.0 Hz, 7-H), 7.01 (d, *J* 5.6 Hz, 4-H), 6.00 (t, *J* 5.6 Hz, 6-H), 5.95 (t, *J* 5.6 Hz, 5-H), 5.09 (s, Cp), 4.69–4.75 (m, ABX further coupled to NH, -CH₂CHNH–), 4.16 (q, *J* 7 Hz, CO₂CH₂Me), 3.31, 3.14 (q, q, -CH₂CHNH–, *J*_{AB} 14.8 Hz), 1.98 (s, COCH₃), and 1.22 (t, *J* 7 Hz, CO₂CH₂CH₃); ¹³C n.m.r. [400 MHz, (CD₃)₂CO] δ 171.09 (CO₂Et), 170.99 (COMe), 136.08 (C-2), 110.84 (C-3), 112.59, 96.36, 81.56, 81.46, 76.77, and 72.29 (Ar-ring), 79.22 (CP), 62.13 (CHCO₂Et), 54.24 (CO₂CH₂Me), 36.76 (-CH₂CH–), 22.60 (COCH₃), and 14.37 (CO₂CH₂CH₃).

For (6): ¹H n.m.r. [400 MHz, (CD₃)₂CO] δ 7.67 (d, J 7 Hz, NH), 6.30 (d, 1 H), 6.26 (d, 1H), and 6.18—6.21 (m, 3H), 5.43 (s, Cp), 4.51—4.68 (m, -CH₂CHNH-, ABX further coupled with NH), 4.12 (q, J 7.0 Hz, CO₂CH₂Me), 3.08, 2.90 (q, q, J_{AB} 14.0 Hz, -CH₂CHNH-), 1.91 (t, J 7Hz, CO₂CH₂CH₂Me); ¹³C n.m.r. [400 MHz, (CD₃)₂CO] δ 170.99 (COEt), 170.63 (NHCOMe), 102.23, 87.94, 87.91, 86.16, 86.10, and 85.81 (Ar-ring), 81.31 (Cp), 61.98 (CHCO₂Et), 53.97 (CO₂CH₂Me), 36.97 (-CH₂CH), 22.50 (-COCH₃), and 14.18 (CO₂CH₂CH₃).